ANALIZA PROCESU PEŁZANIA TKANKI MIĄŻSZU BURAKA ĆWIKŁOWEGO CZĘŚĆ I - PŁYNIĘCIE LEPKOSPRĘŻYSTE

J. Bohdziewicz

Instytut Inżynierii Rolniczej, Akademia Rolnicza, ul. Chełmońskiego 37/41, 51-630 Wrocław e-mail: bohdziewicz@imr.ar.wroc.pl ; bohdziewicz@magma-net.pl

Streszczenie. Przedstawiono wyniki badań pełzania tkanki buraka ćwikłowego. Obliczono wartości chwilowego modułu sprężystości *E* oraz lepkości dynamicznej η , jako parametrów uogólnionego modelu Kelvina-Voigta. Stwierdzono, że do scharakteryzowania fazy płynięcia sprężystolepkiego, w czasie nie przekraczającym 900 sekund, wystarczającym jest model dwuparametrowy. Zmiana wstępnego obciążenia podczas testu ma istotny wpływ na rozrzut uzyskanych wyników.

Słowa kluczowe: pełzanie, model reologiczny, burak ćwikłowy.

WSTĘP

Podstawowym zagadnieniem reologii są odkształcenia ciągłe, zachodzące w materiałach poddanych długotrwałym obciążeniom [6,11,12]. Jeżeli mamy do czynienia z materiałem o zachowaniu sprężystym, dowolne działanie sił zewnętrznych powoduje odpowiedź w postaci proporcjonalnego przemieszczenia; usunięcie obciążenia objawia się powrotem do stanu wyjściowego. W materiale o zachowaniu lepkim działanie sił zewnętrznych wywołuje ruch o prędkości proporcjonalnej do wartości obciążenia; zanikowi siły odpowiada zmniejszenie prędkości, jednakże pozostaje odkształcenie. Charakter opisywanego ruchu wynika z faktu występowania określonych zjawisk fizycznych: może to być przepływ cieczy, pełzanie cieczy Maxwella, pełzanie ciała Kelvina, płynięcie plastyczne.

W przypadku materiałów pochodzenia roślinnego odpowiedź na naprężenie zewnętrzne jest kombinacją odpowiedzi sprężystych, lepkich i plastycznych [7,8,10]. Powodem tego stanu rzeczy jest znaczna zawartość cieczy, anizotropowość struktury oraz inne czynniki.

Prace związane z opisaniem zjawiska pełzania tkanki roślin korzeniowych rozpoczęto w latach siedemdziesiątych ubiegłego stulecia, jak dotychczas z tej grupy roślin obiektem zainteresowania był burak cukrowy [5,7,10]. Kompleksowe badania prowadzone przez Autora na grupie warzyw korzeniowych [1,2,3,4] pozwoliły na wstępne rozpoznanie wartości parametrów charakteryzujących proces pełzania. Niezbędnym jest jednak poznanie charakteru zmian tych wartości w ściśle określonym przedziale czasu trwania procesu. Celem pracy było wyznaczenie zmian wartości modułów sprężystości *E* oraz współczynników lepkości dynamicznej η uogólnionego modelu Kelvina-Voigta, w początkowej fazie procesu pełzania tkanki miąższu buraka ćwikłowego.

MATERIAŁ I METODY

Obiektem badań były korzenie buraka ćwikłowego odmiany Opolski, pochodzące z jednego pola. Wykorzystując standardową metodę suszarkową wyznaczono wilgotność korzeni; zawartość suchej substancji w stosunku do masy całkowitej wynosiła 15±2%. Średnia gęstość badanego materiału wynosiła 1043 kg·m⁻³. Do badań wybrano 25 korzeni, z każdego wycięto po pięć próbek. Wyznaczano siłę F_{max} , charakteryzującą wytrzymałość biologiczną materiału; jednocześnie pobrano dalsze cztery próbki, przy czym po dwie z nich wstępnie obciążano siłą odpowiadającą 50% i 75% wartości F_{max} . Próbki miały postać walca o średnicy 8 mm i wysokości 10,5±0,5mm.

Badania zrealizowano w laboratorium agrofizyki Instytutu Inżynierii Rolniczej AR we Wrocławiu, na maszynie wytrzymałościowej Instron 5566, głowicą o zakresie do 1 kN, z dokładnością pomiarową 0,15‰ mierzonej wielkości Przeprowadzono próby ściskania osiowego, przy prędkości odkształcenia 1 mm·min⁻¹ podczas wyznaczania wytrzymałości doraźnej oraz w początkowej fazie testu pełzania.

Proces pełzania przerywano po upływie 900 sekund. Do opisu przebiegów zmian wartości odkształcenia w funkcji czasu przyjęto równanie charakterystyczne dla uogólnionego modelu Kelvina-Voigta:

$$E = \sum_{i=1}^{3} a_i (1 - e^{b_i \cdot t})$$
(1)

gdzie: ε – odkształcenie względne, t – czas realizacji testu pełzania, a_i , b_i – współczynniki równania. Do wyznaczenia współczynników równania wykorzystano metodę najmniejszych kwadratów, następnie z prawa Hooke'a obliczano wartości chwilowe modułu sprężystości *E* oraz z uogólnionego prawa lepkości Newtona współczynnik lepkości dynamicznej η , jako parametrów przyjętego modelu [6,9]. Stosując zestawienie sekwencyjne analizowano zmiany tych wartości w czasie trwania testu oraz prognozowano zmiany odkształcenia względnego ε na podstawie ekstrapolacji przyjętych funkcji [8,12,14]. Równocześnie porównywano wyniki obliczeń z uzyskanymi dla modelu trzyparametrowego:

$$\varepsilon = a(1 - e^{b \cdot t}) + c \tag{2}$$

gdzie: a, b, c – współczynniki równania.

DYSKUSJA WYNIKÓW

Zestawienie obliczonych wartości modułów sprężystości *E* oraz współczynnika lepkości dynamicznej η przy obciążeniu siłą odpowiadającą 50% i 75% wartości F_{max} zamieszczono na Rys. 1. Na wykresach naniesiono punkty odpowiadające wartościom uzyskanym z obliczeń dla przyjętego modelu dwuparametrowego. Równania opisują przebieg zmian wartości średniej, przedstawiony w postaci linii ciągłej, dodatkowo pokazano przedział ufności dla tej wartości na poziomie $\alpha = 0,05$.

Aby ograniczyć możliwość pojawienia się błędów przypadkowych każdorazowo mierzono wymiary próbki z dokładnością do 0,1 mm oraz masę z dokładnością do 10⁻⁴ g. Porównanie obliczanej gęstość materiału umożliwiało wstępną ocenę poprawności tych pomiarów. Podczas testu pełzania stosowano dwa powtórzenia każdej próby w zadanych warunkach. W żadnym przypadku różnica wyników obliczeń *E* i η nie była większa niż 10%. Przykładowe zestawienie wyników obliczeń dla jednego powtórzenia zamieszczono w Tabeli 1, zmiany w czasie - na Rys.2.

Fig. 1. Statement of elastic modulus E (a) and absolute viscosity η (b) values for two-element Kelvin model.

Czas [s]	R ²	Moduł [MPa]			Współczynnik lepkości [MPa·s]		
		E_1	E_2	E_3	η_1	η_2	η_3
Model sześcioparametrowy							
90	0,9999	59	219	690	6237	2161	1520
150	0,9999	46	192	434	8701	2890	1290
300	0,9999	36	171	312	11575	3898	1189
450	0,9999	30	154	236	14773	5421	1153
600	0,9999	22	129	191	19794	7189	1156
750	0,9999	15	110	173	24746	8142	1170
900	0,9999	10	100	165	28245	8634	1182
Model czteroparametrowy							
90	0,9998	65	218		4562	1121	
150	0,9997	54	177		6085	1145	
300	0,9995	41	140		8731	1232	
450	0,9993	34	122		10974	1331	
600	0,9990	29	108		13040	1454	
750	0,9988	25	97		15321	1586	
900	0,9986	21	89		17701	1723	
Model dwuparametrowy							
90	0,9785	66			1641		
150	0,9693	56			2023		
300	0,9568	42			2991		
450	0,9518	35			3836		
600	0,9488	31			4685		
750	0,9466	28			5473		
900	0,9450	25			6284		
Model trzyparametrowy							
90	0,9887	68	863		2119		
150	0,9847	58	587		2792		
300	0,9816	44	348		4520		
450	0,9813	37	270		5995		
600	0,9813	32	225		7475		
750	0,9812	28	196		8873		
900	0,9812	25	175		10328		

 Tabela 1. Zestawienie wyników obliczeń parametrów dla uogólnionego modelu Kelvina-Voigta

 Table 1. Statement of parameters analytical results for generalized Kelvin model

Rys. 2. Tendencje zmian parametrów uogólnionego modelu Kelvina-Voigta. **Fig. 2.** Trends of parameter changes of generalized Kelvin model.

Jak można zauważyć wzrost wartości obciążenia zwiększa rozrzut uzyskiwanych wyników obliczeń modułu sprężystości E i lepkości dynamicznej η dla poszczególnych powtórzeń pomiaru (Rys. 1). Jest to skutek zmiany wyjściowego stanu materiału pod wpływem obciążenia, niejednakowej dla poszczególnych korzeni, gdyż wartość siły F_{max} zależy od czynników biologicznych. Jednakże relatywnie niewielka zmiana wartości średnich obliczanych parametrów świadczy o zbliżonej reakcji badanego materiału na tego typu obciążenia.

Czas trwania testu został dobrany po uwzględnieniu zmian w przebiegu pierwszej pochodnej przyjętej funkcji. Pochodna ta po okresie początkowego wzrostu może przyjąć wartość stałą już po upływie 450 sekund. W większości przypadków ma to miejsce po 600 sekundach. W przypadku drugiej pochodnej stabilizacja występuje już po 250 sekundach.

Interpretację graficzną zestawienia z Tabeli 1 przedstawiono na Rys. 3 oraz na Rys. 4. Przedstawiono tu aproksymację wyników pomiaru dla 900 sekund i jednocześnie ekstrapolację do 2000 sekund.

Fig. 3. The approximation and extrapolation of $\varepsilon(t)$ function, six-element (a) and four-element (b) Kelvin model.

Rys. 4. Aproksymacja i ekstrapolacja przebiegu $\varepsilon(t)$, dwuparametrowy (a) oraz trzyparametrowy (b) model Kelvina-Voigta.

Fig. 4. The approximation and extrapolation of $\varepsilon(t)$ function, two-element (a) and three-element (b) Kelvin model.

Na podstawie Rys. 3 można zauważyć, że dopiero sześcioparametrowy model w miarę dokładnie aproksymuje rzeczywisty przebieg funkcji $\varepsilon(t)$. Model ten może być wykorzystany do porównania i opisu cech reologicznych badanego materiału. Jednakże w ograniczonym zakresie umożliwia on prognozowanie zmian rzeczywistego przebiegu badanej funkcji, o czym się można przekonać wydłużając czas trwania testu pełzania. Pozostałe modele można wykorzystać jedynie do celów porównawczych w zastosowaniu do innych materiałów. Pomimo stosunkowo dużej wartości współczynnika korelacji, aproksymacja znacznie odbiega od rzeczywistego przebiegu funkcji, co także w szczególny sposób uwidacznia się przy ekstrapolacji (Rys. 4). Szczególnie odnosi się to do modelu trzyparametrowego. Z matematycznego punktu widzenia lepiej odzwierciedla on przebieg badanej funkcji niż dwuparametrowy, jednakże jako ciało realne (w sensie fizycznym) musiałby posiadać zdolność skokowego przyrostu odkształcenia w początkowej fazie procesu pełzania.. Ze względu na warunki realizacji testu jest to co najmniej wątpliwe. Z powodu niejednorodności struktury tkanki roślinnej (obiektu badań) zagadnienie interpretacji fizycznej uogólnionego modelu Kelvina-Voigta jako układu materialnego jest także utrudnione. W zasadzie można interpretować wyniki obliczeń chwilowej wartości modułu sprężystości *E* jako parametru charakteryzującego materiał szkieletowy oraz lepkości dynamicznej η jako opisującej materiał wypełniający, jednakże ich powiązanie z innymi właściwościami fizycznymi ma charakter przypadkowy.

WNIOSKI

- 1. Przyjęty uogólniony model Kelvina-Voigta może opisywać przebieg płynięcia lepkosprężystego tkanki miąższu buraka ćwikłowego w ściśle określonym przedziale czasu trwania eksperymentu pomiarowego. Średnie wartości chwilowego modułu sprężystości *E* oraz lepkości dynamicznej η w niewielkim stopniu zależą od poziomu wstępnego obciążenia próbek materiału. Wzrost obciążenia ma jednak istotny wpływ na rozrzut uzyskanych wyników, co sugeruje zwiększenie liczby powtórzeń pomiarów.
- 2. Pomimo lepszego odwzorowania przebiegu funkcji pełzania przy wyko-rzystaniu wieloelementowego modelu Kelvina-Voigta, do opisania cech reologicznych próbek badanego materiału, wystarczającą jest aproksymacja danych eksperymentalnych modelem dwuparametrowym. Jego parametry w dostatecznym stopniu opisują fazę płynięcia sprężysto-lepkiego na początku procesu pełzania, stanu w którym występuje jeszcze całkowity, opóźniony nawrót sprężysty odkształcenia po zdjęciu obciążenia.

PIŚMIENNICTWO

- 1. **Bohdziewicz J.:** Właściwości mechaniczne i reologiczne wybranych odmian buraka ćwikłowego. Acta Agrophysica, 45, 17-29, 2001.
- Bohdziewicz J.: Właściwości reologiczne związane z morfologią korzenia marchwi. Inżynieria Rolnicza, 12(32), 51-58, 2001.
- Bohdziewicz J.: Zmienność cech reologicznych korzenia pietruszki. Inżynieria Rolnicza, 12(32), 59-64, 2001.
- Bohdziewicz J.: Właściwości mechaniczne i reologiczne korzeni selera. Materiały VII Międzynarodowej Konferencji Naukowej Teoretyczne i Aplikacyjne Problemy Inżynierii Rolniczej, 233-236, Polanica Zdrój, 2002.
- 5. Bzowska-Bakalarz M.: Właściwości mechaniczne korzeni buraków cukrowych. Rozprawa habilitacyjna, Lublin, 1994.
- 6. Ferguson J., Kembłowski Z.: Reologia stosowana płynów. MARCUS, Łódź, 1995.

- Horvath M.: Mechanical and agricultural properties of same agricultural materials. Proceedings of the 2nd International Conference Physical Properties of Agricultural Materials, Gődőllő, 1980.
- 8. Kisiel I.: Reologiczne równania stanu ośrodków quasiliniowych. PAN Wrocław, 1980.
- Lichtensteiniger M.J., Holmes R.G., Hamdy M.Y., Blaisdel J.L.: Evaluation of Kelvin model coefficients for viscoelastic spheres. Trans. of the ASAE, 31(1), 288-292, 1988.
- Nowicki W., Banasik P., Kolodziejczyk P.: Creep process of beet roots subject to axial compression. Transactions of the 1st International Conference Physical Properties of Plant Materials, Lublin, 1976.
- Rao M.A., Rizvi S.S.H.: Engineering Properties of Foods. 2nd edit. Marcel Dekter Inc. New York, 1995.
- 12. Sitkei G.: Mechanics of agricultural materials. Akademiai Kiado, Budapest, 1987.
- Szczepiński W. (red.).: Metody doświadczalne mechaniki ciała stałego. Mechanika Techniczna, t. X, PWN, Warszawa, 1984.
- 14. Wójcicki R.: Wykłady z metodologii nauk. PWN, Warszawa, 1982.

ANALYSIS OF CREEP PROGRESS OF RED BEET FLESH TISSUE PART I - VISCOELASTICS CREEP

J. Bohdziewicz

Institute of Agricultural Engineering, University of Agriculture ul. Chełmońskiego 37/41, 51-630 Wrocław e-mail: bohdziewicz@imr.ar.wroc.pl ; bohdziewicz@magma-net.pl

A b s t r a c t. This paper present results of investigations by creep test for red beet flesh samples. The instantaneous elastic modulus E and absolute viscosity η as parameters of generalized Kelvin's model, were calculated. It was affirmed that flowing stage in time no crossing 900 second limit, may be described by two-element model. The preload change in test has essential effect on scatter of results.

Keywords: creep, rheological model, red beet.